The Magnetic Topology of Coronal Mass Ejection Sources
نویسندگان
چکیده
منابع مشابه
The Magnetic Topology of Coronal Mass Ejection Sources
In an attempt to test current initiation models of coronal mass ejections (CMEs), with an emphasis on the magnetic breakout model, we inspect the magnetic topology of the sources of 26 CME events in the context of their chromospheric and coronal response in an interval of approximately nine hours around the eruption onset. First, we perform current-free (potential) extrapolations of photospheri...
متن کاملCoronal Magnetic Field Topology over Filament Channels: Implication for Coronal Mass Ejection Initiations
The magnetic field topology at the coronal mass ejection (CME) source regions has been one of the major focuses of CME initiationmodels.While the ‘‘breakout’’ model requires a quadrupolar magnetic topology in the solar corona to enable an eruption, other models have shown that a bipolar magnetic topology can be the source region of a CME. In this paper, we use observational data and a potential...
متن کاملCoronal mass ejection: key issues
Coronal Mass Ejections (CMEs) have been addressed by a particularly active research community in recent years. With the advent of the International Heliophysical Year and the new STEREO and Hinode missions, in addition to the on-going SOHO mission, CME research has taken centre stage in a renewed international effort. This review aims to touch on some key observational areas, and their interpre...
متن کاملThe Coronal Mass Ejection Waiting-time Distribution
The distribution of times ∆t between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996-2001 is examined. The distribution exhibits a power-law tail ∝ (∆t) with an index γ ≈ −2.36± 0.11 for large waiting times (∆t > 10 hours). The powerlaw index of the waiting-time distribution varies with the solar cycle: for the years 1996-199...
متن کاملMagnetic Reconnection and Mass Acceleration in Flare–coronal Mass Ejection Events
An observational relationship has been well established among magnetic reconnection, high-energy flare emissions and the rising motion of erupting flux ropes. In this paper, we verify that the rate of magnetic reconnection in the low corona is temporally correlated with the evolution of flare nonthermal emissions in hard X-rays and microwaves, all reaching their peak values during the rising ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2007
ISSN: 0004-637X,1538-4357
DOI: 10.1086/514814